IN COLLABORATION WITH THE WATER RESEARCH FOUNDATION

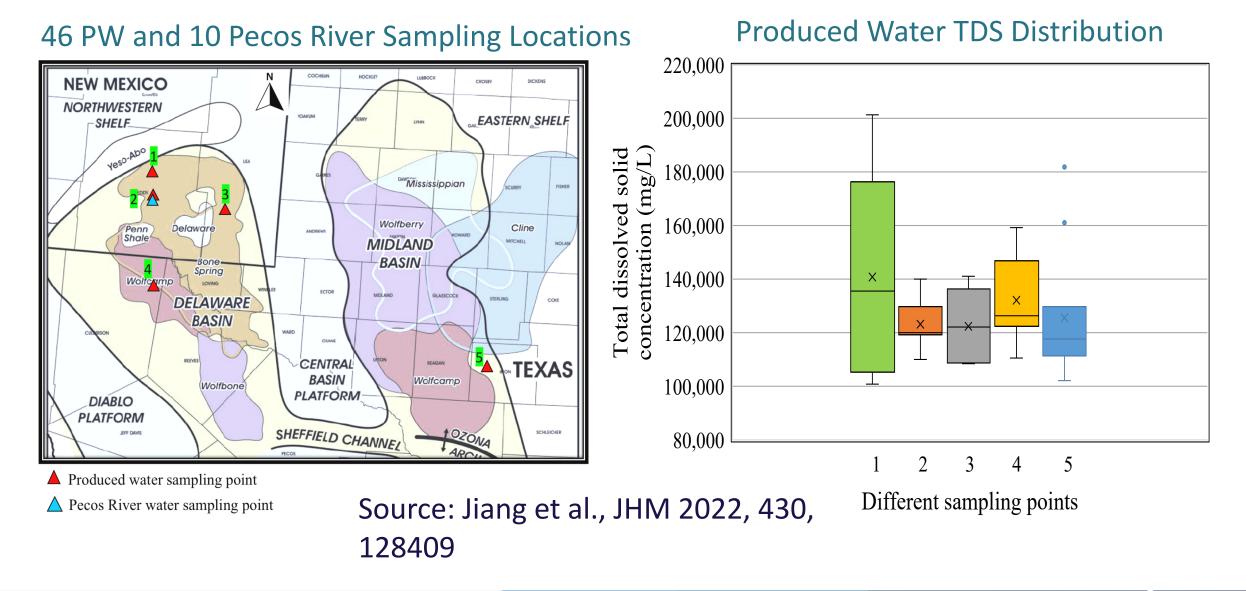
# WATEREUSE<sup>®</sup> 2023 SYMPOSIUM

MARCH 5-8, 2023 • MARRIOTT MARQUIS ATLANTA \_\_\_\_\_\_ ATLANTA, GA \_\_\_\_\_ REIMAGINING WATER TOGETHER

Panel on Treated Produced Water Risk and Toxicology Evaluation

Permian Basin Raw and Treated Produced Water Quality Analysis Pei Xu – New Mexico State University

March 7, 2023


### Produced Water Treatment and Reuse is Expanding

| Region               | PW Production (2017)                                                                | PW Disposal<br>(Deep Well<br>Injection) | PW Reuse<br>Inside O&G Field      | PW Reuse for EOR                  | PW Reuse/<br>Dispose Outside<br>O&G Field | Examples of PW<br>Reuse Outside<br>O&G Field                                                                                                          |
|----------------------|-------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Appalachian<br>Basin | $\begin{array}{c} 105 \text{ MMbbls} \\ (16.8 \times 10^6 \text{ m}^3) \end{array}$ | PA: 1.1%,<br>WV: 56%,<br>OH: 89%.       | PA: 96%,<br>WV: 29%,<br>OH: 9.1%. | PA: n/a,<br>WV: 14%,<br>OH: 1.3%. | PA: 1.6%,<br>WV: n/a,<br>OH: n/a.         | n/a                                                                                                                                                   |
| Oklahoma             | $\begin{array}{c} 2844 \text{ MMbbls} \\ (455 \times 10^6 \text{ m}^3) \end{array}$ | 41.7%                                   | n/a                               | 44.9%                             | 13.4%                                     | n/a                                                                                                                                                   |
| Texas                | 9895 MMbbls<br>(1583 $\times$ 10 <sup>6</sup> m <sup>3</sup> )                      | 36.2%                                   | n/a                               | 46.1%                             | 17.6%                                     | n/a                                                                                                                                                   |
| California           | 3100 MMbbls<br>(496 $\times$ 10 <sup>6</sup> m <sup>3</sup> )                       | 22.4%                                   | 5.1%                              | 59.3%                             | 11.1%                                     | Irrigation                                                                                                                                            |
| Colorado             | $\begin{array}{c} 310 \text{ MMbbls} \\ (49.6 \times 10^6 \text{ m}^3) \end{array}$ | 47.1%                                   | 8.9%                              | 32.5%                             | 11.5%                                     | Dust control;<br>aquifer recharge<br>and recovery; pits<br>and surface water<br>discharge.                                                            |
| Wyoming              | 1700 MMbbls (272 $\times$ 10 <sup>6</sup> m <sup>3</sup> )                          | 14%                                     | n/a                               | 46%                               | 37%                                       | Surface water<br>discharge;<br>groundwater<br>injection; dust<br>control and road<br>application;<br>irrigation; land<br>application;<br>impoundment. |
| New<br>Mexico        | 1240 MMbbls (196.9 $\times$ 10 <sup>6</sup> m <sup>3</sup> , 2019)                  | 51%                                     | 10%                               | 40%                               | n/a                                       | n/a                                                                                                                                                   |

Note(s): PW: produced water; MMbbls: million barrels; PA: Pennsylvania; OH: Ohio; WV: West Virginia; n/a: not available.

Jiang, W., Lin, L., Xu, X., Wang, H., Xu, P. (2022) Analysis of regulatory framework for produced water management and reuse in major oil and gas producing regions in the United States. Water 14 (14), 2162. <u>https://www.mdpi.com/2073-4441/14/14/2162</u>

### **Consortium Data on Permian Produced Water Quality**



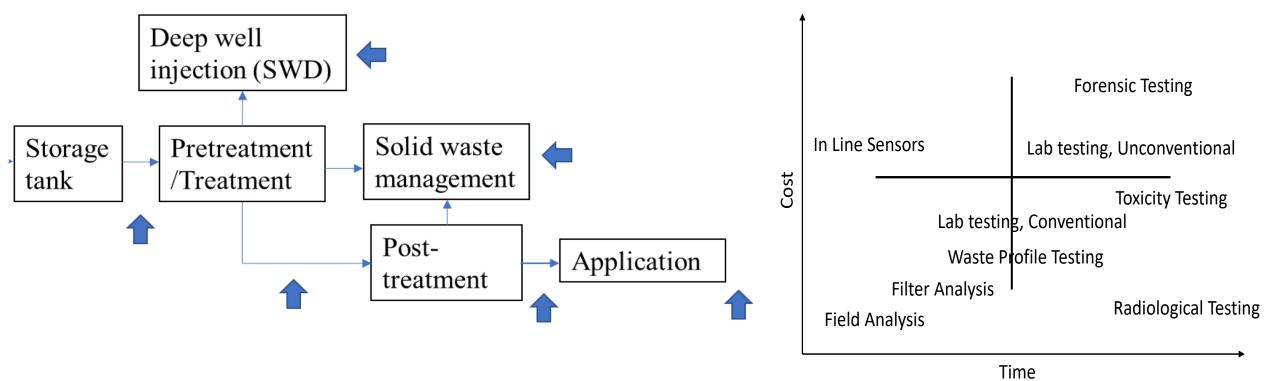
#### **Chemical Analysis**

More than 300 targeted analytes were quantitatively analyzed, including wet chemistry, inorganics, radionuclides, organics such as VOCs, SVOCs, total petroleum hydrocarbons, organic acids, oil and grease, pesticides/herbicides, dioxins, and tentatively identified compounds, and per- and polyfluoroalkyl substances (PFAS).

For 10 produced water samples collected in 2020, 91 analytes were quantified and 218 analytes were not detected (309 in total)

For 10 Pecos River samples collected in 2020, 67 analytes were quantified and 242 analytes were not detected (309 in total)

Source: Jiang et al., JHM 2022, 430, 128409


### Produced Water and Waste Water Quality Evaluation



| Raw                                     | Raw Pecos                  | Permian Raw                              |  |
|-----------------------------------------|----------------------------|------------------------------------------|--|
| Municipal                               | River Water                | Produced                                 |  |
| Waste Water                             | ~70 major                  | Water                                    |  |
| ~60 major<br>constituents<br>(~20 TICs) | constituents<br>(~10 TICs) | ~90 major<br>constituents<br>(~3-4 TICs) |  |

- Extensive sampling and analysis program in 2020 – assessed 300 constituents
- Evaluation suggests that produced water in most basins has ~100 +/- 20 constituents
- Did identify tentatively identified compounds (TICs) in all waters (i.e. unknowns)
- Identified analytical method for unknowns using NMSU HR LCMS
- In 2022 hired a full-time HRLCMS analyst focused on treated produced water, with analytical evaluations already underway
- With NMED and Consortium established sampling protocol (NPDES+) and (Tiered) monitoring protocol
- Sampling and analysis is driven by Risk and Tox Protocol – but supports treatment and application selection

#### Multi-tiered Produced Water Characterization



Source: Jiang et al., JHM 2022, 430, 128409

The cost and turnaround time of produced water analysis

2023 WATEREUSE SYMPOSIUM

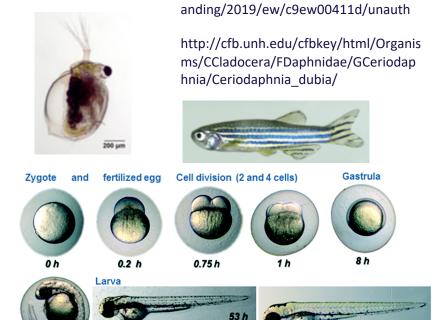
## Water Quality Drives Toxicity and Treatment Selection

#### Results of general quality of 46 PW samples from Delaware and Midland Basins – Some Challenges will Drive Pre-, Post-, and Treatment

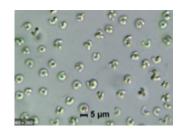
|            |                  | Mean    | Max     | Min     | 25th percentile | 50th percentile | 75th percentile |
|------------|------------------|---------|---------|---------|-----------------|-----------------|-----------------|
| Alkalinity | mg/L as $CaCO_3$ | 272     | 870     | 100     | 128             | 207             | 336             |
| Ammonia    | mg/L             | 432     | 750     | 320     | 330             | 400             | 495             |
| COD        | mg/L             | 1,626   | 3,100   | 930     | 1,250           | 1,400           | 1,950           |
| рН         | SU               | 6.6     | 8.1     | 3.9     | 6.3             | 6.7             | 7.0             |
| TDS        | mg/L             | 128,641 | 201,474 | 100,830 | 113,441         | 122,280         | 134,525         |
| тос        | mg/L             | 103.5   | 248.1   | 2.4     | 28              | 90.6            | 173.3           |
| TSS        | mg/L             | 342.9   | 790     | 85      | 142.5           | 375             | 422.5           |
| Turbidity  | NTU              | 116.4   | 200     | 23      | 36              | 110             | 200             |
| MBAS       | mg/L             | 1.10    | 2.1     | 0.047   | 0.92            | 0.97            | 1.33            |

Source: Jiang et al., JHM 2022, 430, 128409

#### Nontargeted Analysis Led by Dr. Robert Young


|                             | Sample<br>Preparation                                                                         | Instrumental<br>Analysis                                                                                                                                             | Data<br>Analysis                                                                                        | LC-Orbitrap MS             |
|-----------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|
| Targeted<br>Analysis        | <ul> <li>Optimized for targets</li> <li>Selective</li> </ul>                                  | <ul> <li>Optimized for targets</li> <li>Sensitive</li> <li>Focuses completely on targets</li> </ul>                                                                  | <ul> <li>Quantitative</li> <li>Focuses on accuracy,<br/>precision, &amp;<br/>reproducibility</li> </ul> | ThermoFisher<br>SCIENTIFIC |
| Nontarget<br>ed<br>Analysis | <ul> <li>More<br/>"universal"</li> <li>Still doesn't<br/>work for all<br/>analytes</li> </ul> | <ul> <li>Aims to collect as much data as possible</li> <li>Needs high chromatographic and/or mass resolution</li> <li>Still doesn't work for all analytes</li> </ul> | <ul> <li>Semi-quantitative</li> <li>Focuses on<br/>confidence in<br/>identification</li> </ul>          |                            |

# Nontargeted analysis is most useful for identifying what to target


Ō

# Laboratory Toxicity Assays Led by Dr. Yanyan Zhang

- Acute toxicity test with *Daphnid* 
  - Immobilization of *Ceriodaphnia dubia*
  - EPA-821-R-02-012,Method 2002.0
- Fish Embryo Acute Toxicity (FET) Test
  - Based on the development of fish embryos
  - OECD, Test No. 236
- Chronic toxicity with Daphnid
  - Based on survival/reproduction of *Ceriodaphnia* dubia
  - EPA-821-R-02-013, Method 1002.0
- Chronic toxicity with freshwater green algae
  - Chronic toxicity of *Selenastrum capricornutum*
  - Algal growth
  - EPA-821-R-02-013, Method 1003.0



https://pubs.rsc.org/en/content/articlel



Algae: primary producers Invertebrates: primary consumers Fish: secondary consumers

72 h

2023 WATEREUSE SYMPOSIUM

Dr. Pei Xu, Research Director NM Produced Water Research Consortium New Mexico State University pxu@nmsu.edu Web Site: Google – NMPWRC https://nmpwrc.nmsu.edu

