IN COLLABORATION WITH THE WATER RESEARCH FOUNDATION

# **WATEREUSE 2023 SYMPOSIUM** MARCH 5-8, 2023 • MARRIOTT MARQUIS ATLANTA

ATLANTA, GA

Produced Water Treatment and Reuse Efforts in Support of the EPA WRAP

New Mexico Research, Development, and Implementation Efforts Mike Hightower – Director New Mexico Produced Water Research Consortium

REIMAGINING

WATER

TOGETHER

March 7, 2023

## NM 2019 Produced Water Act

- Through the Act, statutory and regulatory authority for the reuse of produced water was modified:
  - Reuse inside oil and gas sector under the Oil Conservation Division
  - Reuse outside oil and gas sector, under NM Environment Department.
- The Act encourages produced water reuse to:
  - Enhance fresh water sustainability,
  - Reduce fresh water use in the oil and gas sector,
  - Support new economic development opportunities,
  - Maintain public and environmental health and safety.
- Identified ownership owned by the treater for first use (mining law)

Many western states moving in this direction – TX, OK, CO, CA, AZ, UT

2

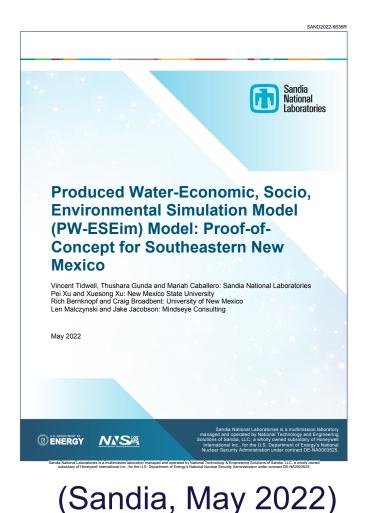
### Waste Water Reuse is Challenging – But has Common Issues

#### Raw Municipal Waste Water

~60 major constituents (many unknowns) Raw Pecos River Water ~70 major constituents

(some unknowns)

Raw Produced Water ~90 major constituents (some unknowns)


## Outreach is Critical - Data portal, Web site, Public Meetings

| WaterSTAR WaterSTAR: NM Produce | ed Water Tier 1 Access         |              |                          | <b>A</b>                       | D Asset All Filters |
|---------------------------------|--------------------------------|--------------|--------------------------|--------------------------------|---------------------|
| Document was led saved: 50m age | E E E 0 0 0                    | Quarter Toy  | enship Explorer          |                                | 0 🔹 🖻               |
|                                 |                                |              | A                        | pplied filters                 | 1                   |
| Anior                           |                                | ID           | Quantity Last Year (881) | Quantity Last Five Years (BBL) | Quantity Well Count |
|                                 |                                | 0085.0336.NE |                          | 9131                           | 1                   |
|                                 |                                | 0105.0326 NE | 64548                    | 259725                         | 1                   |
| and the stand of the            |                                | 0115.030E NE | 0                        | 129751                         | 1                   |
| 1 B                             |                                | 0115.034E NE | 130                      | 1368792                        | 1                   |
|                                 |                                | 0125 0326 NE | 2050342                  | 9784383                        | 3                   |
| 2 . ( > - (                     |                                | 0125 0338 NE | 2637744                  | 10251692                       | 2                   |
| ing interest                    |                                | 0125.034E.NE | 1555                     | 30169                          | 4                   |
|                                 |                                | 0145.030E.NE | 76802                    | 477097                         | 1                   |
| Albuquerque                     |                                | 0155.030E.NE | 1062950                  | 5036320                        | 3                   |
|                                 |                                | 0155.0378.NE | 7094794                  | 46457787                       | 4                   |
|                                 | Com.                           | 0165.0328.NE | 437152                   | 2892652                        | 2                   |
|                                 |                                | 0165.030E.NE | 7520                     | 260977                         | 1                   |
|                                 |                                | 0175.0296.NE | 3233337                  | 23152566                       | 7                   |
|                                 |                                | 0175.0316.NE | 196779                   | 1002584                        | 1                   |
|                                 |                                | 0175.0346.NE | 3360979                  | 23(19)7714                     | 4                   |
|                                 |                                | 0175.0386.NE | 1342179                  | 13882090                       | 2                   |
|                                 | and the second                 | 0185.027E.NE | 6585503                  | 47355896                       | 7                   |
|                                 | E 12 19 19 19                  | 0185.0286.NE | 1342671                  | 10661504                       | 6                   |
| unthen                          | 1000                           | 0185-0326 NE | 171590                   | 640821                         | 1                   |
|                                 | - F W                          | 0185.0346.NE | 64063                    | 1011925                        | 2                   |
| A CONTRACTOR                    |                                | 0185.0356.NE | 237408                   | 1337058                        | 1                   |
| Contractions                    |                                |              |                          |                                | ,                   |
|                                 | B Daw-Drawfilling contributors |              | 44 A. 4                  | >> 299 Total Results   Page 1  | -16                 |
|                                 |                                |              | Go to page: 1            | Show 50 🛩                      |                     |

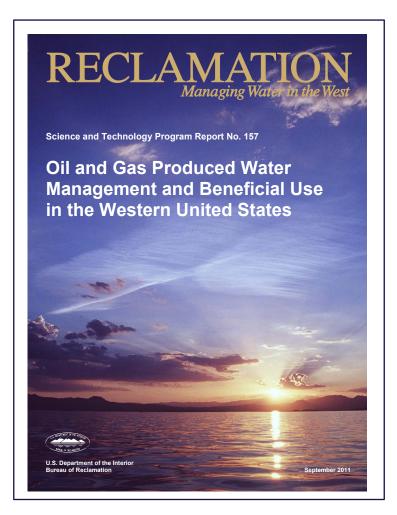
### http:/nm.waterstar.org

- SWD Water Quality and Quantity data by ¼ Township.
  - Dashboard of monthly disposal
  - Aggregates date in GIS layers
- National platform supported by GWPC
- Water quality data is limited and old
  - Limited value in supporting reuse,
  - Expanding quality data collection with producers in 2023
- Most common comment 'I like it, does Texas have something like this'

# Accurately Quantifying ESG of Produced Water Reuse



### APPROACH

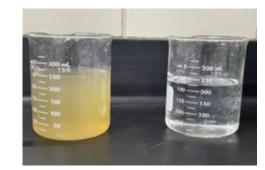

- System dynamics based socio-economic model with Sandia, <u>funded by DOE</u>
- Provides <u>quantitative</u> ESG metrics –jobs, taxes, GDP
- Model being applied for Hydrogen Hub quantitative EEEJ requirements

### CHALLENGE

- Current ESG metrics include waste reduction benefit of PW reuse, but not the economic and social benefits of PW reuse.
- Working with ESG rating groups to address

# Movement Toward Common Treatment Requirements

| Parameter                                                        | Units              | NM                     | BoR                      |  |  |  |
|------------------------------------------------------------------|--------------------|------------------------|--------------------------|--|--|--|
|                                                                  |                    | Regulatory             |                          |  |  |  |
|                                                                  |                    |                        | Recommended              |  |  |  |
|                                                                  |                    | Value                  | Irrigation               |  |  |  |
|                                                                  |                    |                        | Values                   |  |  |  |
| рН                                                               |                    |                        | 6.5-8.0                  |  |  |  |
| Temperature                                                      | °C                 |                        | 25-30                    |  |  |  |
| Turbidity                                                        | NTU                |                        | 30 max                   |  |  |  |
| Total dissolved solids (TDS)                                     | mg/L               | 500-2000*              | 500-2000*                |  |  |  |
| Shall not damage or impair animal,                               |                    |                        |                          |  |  |  |
| plant or aquatic life                                            |                    |                        |                          |  |  |  |
| *(Estimated Values for agricul                                   | tural use based on | SAR and Class 1 and 2  | irrigation water)        |  |  |  |
| Chlorides                                                        | mg/L               |                        | <100                     |  |  |  |
| Sulfates                                                         | mg/L               |                        |                          |  |  |  |
| Alkalinity                                                       | mg/L               |                        | <500*                    |  |  |  |
| Nitrates                                                         | mg/L               |                        | 10-45                    |  |  |  |
| *(Above values estimated from BOR and SAR of 12-15)              |                    |                        |                          |  |  |  |
| Total Metals                                                     | mg/L               | ~ <10                  | ~<25                     |  |  |  |
| Aluminum                                                         | mg/L               | 5.0                    | 5.0 long-term            |  |  |  |
|                                                                  |                    |                        | 20.0 short-term          |  |  |  |
| Arsenic                                                          | mg/L               | 0.1                    | 0.1 - 2.0                |  |  |  |
| Beryllium                                                        | mg/L               |                        | 0.1 - 0.5                |  |  |  |
| Boron                                                            | mg/L               | 0.75                   | 0.75 - 5.0               |  |  |  |
| Cadmium                                                          | mg/L               | 0.010                  | 0.01 - 0.05              |  |  |  |
| Chromium                                                         | mg/L               | 0.100                  | 0.10 - 1.0               |  |  |  |
| Cobalt                                                           | mg/L               | 0.050                  | 0.05 - 5.0               |  |  |  |
| Copper                                                           | mg/L               | 0.200                  | 0.20 - 5.0               |  |  |  |
| Fluoride<br>Iron                                                 | mg/L               |                        | 1.0 - 15.0<br>5.0 - 20.0 |  |  |  |
| Lead                                                             | mg/L               | 5.0                    | 5.0 - 20.0               |  |  |  |
| Lithium                                                          | mg/L<br>mg/L       | 5.0                    | 2.5                      |  |  |  |
| Manganese                                                        | mg/L               |                        | 0.20 - 10.0              |  |  |  |
| Molybdenum, dissolved                                            | mg/L               | 1.0                    | 0.01 - 0.05              |  |  |  |
| Nickel                                                           | mg/L               | 1.0                    | 0.20 - 2.0               |  |  |  |
| Selenium                                                         | mg/L               | 0.050                  | 0.02                     |  |  |  |
| Vanadium, dissolved                                              | mg/L               | 0.100                  | 0.1 - 1.0                |  |  |  |
| Zinc                                                             | mg/L               | 2.0                    | 2.0 - 10.0               |  |  |  |
| Naturally Occurring Radioactive                                  | 0.                 |                        | 2010                     |  |  |  |
| Material                                                         | pCi/L              | ~ <30 *                |                          |  |  |  |
| Adjusted gross alpha                                             | pCi/L              | 15*                    |                          |  |  |  |
| Radium 226+228                                                   | pCi/L              | 30*                    |                          |  |  |  |
|                                                                  |                    | for wildlife watering) |                          |  |  |  |
| Total Oils and Grease                                            | mg/L               | 48*                    | 48*                      |  |  |  |
| *(not identified, but federal standard for irrigation discharge) |                    |                        |                          |  |  |  |
| Ammonium (NH <sub>4</sub> +)                                     | mg/L               |                        | 10-40*                   |  |  |  |
| *(identified as common irrigation practice)                      |                    |                        |                          |  |  |  |




#### BOR Report 157, 2011

# NM Produced Water Treatment Research

### • PWS 'Clean Brine Standard'

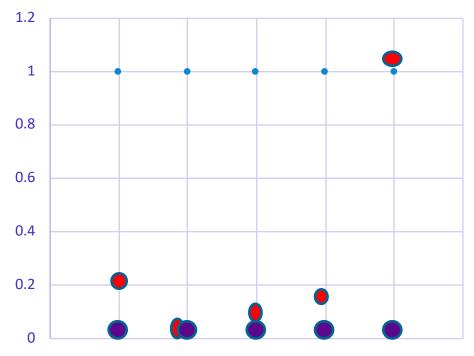
- Bench and pilot-scale testing
- No/low bulk chemical use
- No/low voc emissions
- Small footprint/scalable
- <\$0.20/bbl
- Treatment
  - Two successful one failed test
  - Four/five tests scheduled for 2023
  - Cooperative testing with TXPWC and Colorado in 2023



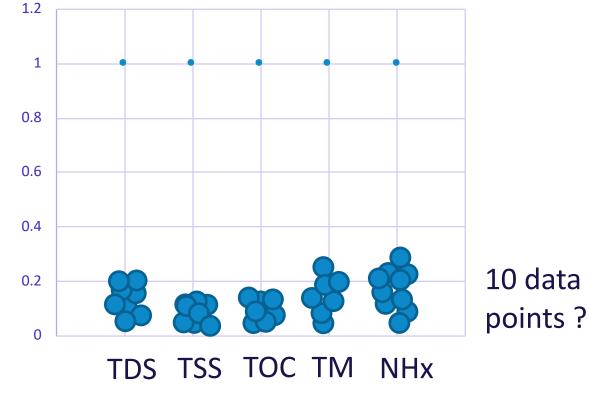
Permian Basin 100,000 TDS SWD



#### Permian Basin -100,000 TDS SWD



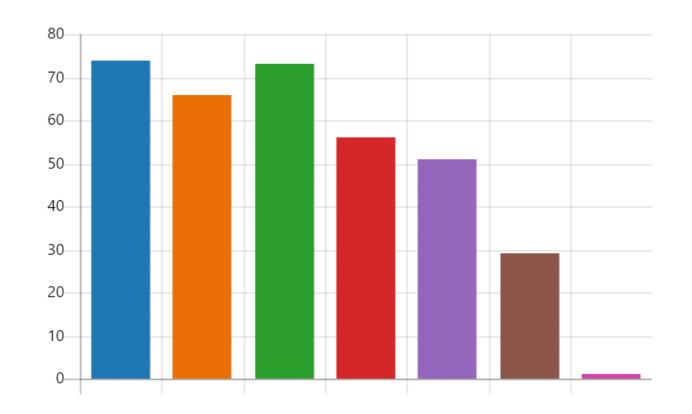

San Juan Basin 10,000 TDS RO Treated PW


# Regulatory Hurdle – Need More Treatment Data

(Need curated collaborative efforts between NM, TX, CO, OK, WY)

Treated PW Constituent Value/ Regulatory Value Treated PW Constituent Value/ Regulatory Value



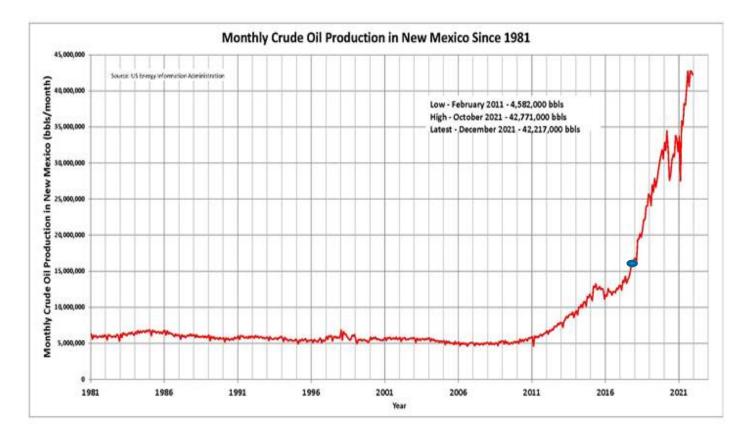

TDS TSS TOC TM NHx Current NM Curated Pilot Data



Needed NM Curated Pilot Data

# Growing Support of Treated Produced Water Reuse

- Use inside oil and gas
- Industrial use outside oil and gas
  - Ag uses
- Multiple ag uses
  - Supplement drinking water
- Need more info
  - Do not support any use




(Approved Survey of 120 respondents at Science Day at 2022 NM State Fair)

9

## Excess Produced Water and the Need for New Water

• At 2018 volumes, New Mexico had 10 years of disposal space





"... augment supply regionally, through such tools as brackish groundwater desalination, wastewater reuse, and <u>treated</u> or recycled produced water. "

## Produced Water Treatment and Reuse Implementation in 2023

- Working with OCD on plugging hundreds of orphaned/abandoned wells (possibly up to 2,000)
- ~ \$20 M of state funding, approximately 4 wells per week in 2023
- Paying \$2/bbl for fresh water and \$3/bbl for 10# brine,
- 3 operational areas in the Permian, 500 bbls/day <u>talking to technology groups</u>
- 2 sets of water data/mo from 3 areas, for 6 months = 36 data points in 2023!



#### **Common Abandoned Wells**

Mike Hightower, Director NM Produced Water Research Consortium 505-859-1563, <u>mmhightower@q.com</u> Web Site: Google – NMPWRC https://nmpwrc.nmsu.edu

