

Permian Basin Produced Water Quality Drivers for Treatment and

Produced Water Societ **Reuse** n Basin Summit 2023 Midland – August 14-16, 2023

Mike Hightower, Director New Mexico Produced Water Research Consortium mmhightower@q.com, 505-859-1563

Produced Water's Impact in the Permian 🛔 Energy 🗅 Land 🕈 Conservation

WATER SOCIETY WATER SOCIETY PERMIAN BASIN 2023 Southwest Climate History Based on Tree Ring Data

The southern U.S. and the mid-latitudes are in the 100th year of a 300 year arid cycle - which in the past has led to stress of civilizations

Produced Water's Impact in the Permian 🛔 Energy 🗅 Land 🗢 Conservation

producedwatersociety.com

NM PW Research Consortium Objectives

2019 NM Produced Water Act – encourages produced water treatment and reuse to:

- Reduce/eliminate fresh water use in oil and gas sector (OSE-OCD-industry)
- Create new water supplies for the state (OSE)
- Provide new water for economic development (EDDindustry-communities)
- Assure cost-effective treatment and public and environmental safety (NMED-EPA-BLM-SLO-OCD-NGOs)

Consortium – a group that shares a common lot (goals, objectives, timeframe – in harmony)

Water Stewardship in Transboundary Basins

Produced Water's Impact in the Permian 🛔 Energy 🕲 Land 🕈 Conservation

Significant NM Public Support for Better Fresh Water Stewardship by Produced Water Reuse

- Use inside oil and gas
- Industrial use outside oil and gas
 - Ag uses (non-food crops)
- Multiple ag uses (food crops)
 - Supplement drinking water
- Need more info
 - Do not support any use

(NMPRC Public Surveys - 5 venues to date – 6 more venues by fall 2023)

Produced Water's Impact in the Permian 🛔 Energy 🗅 Land 🕈 Conservation

_

PRODUCED WATER SOCIET Relative Permian Water Quality and Treatment Needs

(Based on analyzing for ~300 constituents)

 Mineral recovery interest growing significantly

producedwatersociety.con

Produced Water's Impact in the Permian 🛔 Energy 🗅 Land 💆 Conservation

5

Permian Basin Produced Water Quality Driving Treatment and Reuse Based on 46 PW samples from Delaware and Midland Basins

		Mean	Max	Min	25th percentile	50th percentile	75th percentile
Alkalinity	mg/L as CaCO ₃	272	870	100	128	207	336
Ammonia	mg/L	432	750	320	330	400	495
COD	mg/L	1,626	3,100	930	1,250	1,400	1,950
рН	SU	6.6	8.1	3.9	6.3	6.7	7.0
TDS	mg/L	128,641	201,474	100,830	113,441	122,280	134,525
тос	mg/L	103.5	248.1	2.4	28	90.6	173.3
TSS	mg/L	342.9	790	85	142.5	375	422.5
Turbidity	NTU	116.4	200	23	36	110	200
MBAS	mg/L	1.10	2.1	0.047	0.92	0.97	1.33

Highlighted values show constituents that drive pre, post

and treatment processes of produced water for safe and cost-effective reuse Produced Water's Impact in the Permian 🛔 Energy 🛽 Land 🕈 Conservation

PRODUCED Results of Permian 'Clean Brine' pre-treatment

Value	Results
Reported	n/A
6.0-8.0	Passed (ozone only)
>350 mV	Passed (ozone only)
<25 NTU	Passed (ozone + filtration)
Non-Detectable	Passed (ozone only)
< 25 micron	Passed (ozone + filtration)
<10ppm	Passed (ozone + filtration)
< 5ppm	Passed (ozone only)
<200 pg/ml	Passed (ozone only)
	Value Reported 6.0-8.0 >350 mV <25 NTU Non-Detectable < 25 micron <10ppm < 5ppm <200 pg/ml

Permian Basin -100,000 TDS PW (left) w/membrane pretreatment to remove TOC, TSS (right) Permian Basin -100,000 TDS PW (left) w/membrane pretreatment and concentrate (right) Permian Basin -100,000 TDS PW with ozone/filtration pretreatment

PWS 'Clean Brine' pretreatment cost < \$0.20/bbl target Creates a high quality water for desalination

Produced Water's Impact in the Permian 🛔 Energy 🗅 Land 👆 Conservation

producedwatersociety.com

Thermal Treatment w/o Pretreatment for Organics but w/ Post Treatment for Organics

	Distillate Pre- Carbon Filter	Distillate Post Carbon Filter		
Parameters (mg/L)	Representative Sample	12/00/21		
Benzene	0.501	<0.000214		
Toluene	0.548	<0.000500		
Ethylbenzene	0.0214	<0.000515		
Xylenes	0.377	<0.000330		
TPH (C6 to C12)	1.51	<0.840		
TPH (>C12 to C28)	1.53	<0.819		
TPH (>C28 to C35)	<0.860	<0.819		
TPH (C6 to C35)	3.04	<0.840		
Fluorene	<0.00163	<0.00163		
Naphthalene	0.00993	<0.000542		
Phenanthrene	0.00145	<0.00142		
2-Nitrophenol	0.007	<0.00167		
Phenol	0.026	0.000693		

TDS good, but carry over of organics and ammonia required post treatment to meet TOC and Whole Effluent Toxicity requirements

Produced Water's Impact in the Permian 🛔 Energy 🛽 Land 🕈 Conservation

8

Permian Produced Water Treatment Performance Trends vs Disposal

- Pre-treatment 'Clean Brine Standard'
 - Several technologies showing good performance at <\$0.20/bbl
 - Likely needed to provide high quality feed for treatment systems
- Treatment
 - \$0.20 \$0.30/bbl in San Juan Basin
 - \$0.75 \$1.20/bbl in Permian Basin
- Post-treatment
 - Likely required for ammonia or organics removal depending on pre-treatment and application
 - Likely required to meet Whole Effluent Toxicity criteria requirements
 - Likely absorption process for trace constituents
- Human cell-line data
 - Post-treatment possible depending on application and pre-treatment

Produced Water's Impact in the Permian Lenergy O Land + Conservation

Produced Water Disposal Costs in the Permian Basin in \$/bbl

Produced Water Disposal Costs in The Permian as a % of Oil Price/bbl

9

PRODUCED 2023 Affiliated Permian Testing Support – TX and NM

E	Company	Process	Land Discharge	Location and Dates	PW Quality	PW Volume/ Duration	Current Status
	Hilcorp (1)	Membrane distillation treatment field-pilot	No - closed loop	San Juan Basin, near Bloomfield Summer 2023	40K TDS	20 bbls/day 1-2 months at a couple of sites	NMED and BLM permits, waiting on OCD approval
	Kanalis Resources (2)	Small green house pilot of treated PW for pine seedlings	No - closed loop w/in green house	San Juan Basin, near Ojo Encino Chapter House SW of Cuba NM Fall 2023	10K TDS, previous bench testing shows ve	20 bbls/day for 9 months	NMED permits, OCD approval with additional info, waiting on BLM approval.
	Infinity Water (3)	Pre and thermal treatment and green house study	No - closed loop w/in green house	Permian Basin , Lea/Eddy County line Summer 2023	120K TDS	200-1000 bbls	NOI to NMED in May
	Hydrozonix(4)	Enhanced Evap at SWD	No - closed loop w/in existing pond	Permian Basin near Carlsbad, Summer 2023	120K		NOI to NMED and OCD in May
	Apatech /5-e Water (5)	Produced water treatment	Yes - at OCD permitted sites	Permian Basin <mark>R</mark> oswell/ Artesia Area Second half 2023	Abandoned wells plugging and closure	200-300 bbls/day	Coordinating with OCD on NOIs and permits
	Encore Green (6)	Produced water treatment	No - closed loop	Permian June and July 2023	115K TDS	2000 bbls/day	Near Midland TX
	Bechtel (7)	Thermal treatment system (c	No - closed loop	Permian Basin Summer 2023	120 K TDS Permian Basin	500 bbls/day for 6 months	Near Midland TX mobilization in July 2023
	Industry JIP (8,9,10)	Three pre-treatment, treatment, and post- treatment,	No - closed loop	Permian Basin Summer - Fall 2023	120K TDS	500 bbls/day	Near Midland TX
	Texas Pacific Water (11)	Physical/ membrane treatment with green house	No - closed loop w/in green house	Permian Basin Late fall	100K TDS	10-20 bbls/day	In Midland TX
	Sun Vapor (12)	Solar distillation Small pilot-scale	No - closed loop	Permian Fall 2023 near Hobbs/ Lovington	100K TDS	20-50 bbls/day	NMED permit, need BLM and OCD permits
	Colorado School of Mines (13)	Bioreactor/membrane treatment	No - closed loop	Permian Fall 2023 near Hobbs/ Lovington	100K TDS	20-50 bbls/day	No NOIs submitted yet
	Solmem (14)	Solar membrane distillation	No - closed loop	BRNDRF and Permian Near Hobbs	Up to 100K TDS	20 bbls/day	Bench-scale permit submitted to NMED
	Intrepid (15)	Sustainable solution mining pre-treatment pilot-testing	No - closed loop w/in existing ponds	Permian Basin Near Carlsbad Fall/Winter 2023	170-250K TDS	50 bbls/day - focus on using 300,000 bbls per day at full-scale	

Succes water 5 millact in the Fermian & Energy w Land & Conservation

PRODUCED Water Quality Risk and Toxicology Analysis Challenges

Standardized Collaboration Approaches:

- Standardized Sampling Protocol w/USEPA
- Standardized NPDES+ Analysis (~300 analytes)
 - Certified Lab, NMSU, and USEPA
- TIC/Unknown Analysis HR-LCMS @ NMSU
- Whole Effluent Toxicity Testing
 - Certified lab and NMSU
- Human cell-line analysis
 - USEPA and NMSU
- State of the Art Risk and Tox Analysis
 - Predicted Env. Conc. (PEC)
 - Predicted No-effect Conc (PNEC) supported and coordinated by ExMo and UofDE

- TIC/Unknown Analysis of raw PW difficult for HR-LCMS (mass balance of treated vs raw water)
- Analysis turnaround how to improve
- NPDES+ and WET analysis over \$40K for full suite analysis
- Do we need bio-assays and refugia to better assess safety?

Produced Water Reuse Moving Forward

- New Water is one of 8 policies (Dec 2022)
 - "The need to augment supply regionally, through such tools as brackish groundwater desalination, wastewater reuse, and treated or recycled produced water."
 - Policy aligns with EPA's National Water Reuse Action Plan
- NM Legislature funded \$35 M in 2023 to support the characterization and use of nontraditional waters
 - \$30M to the State Engineer to characterize brackish aquifers
 - \$3 M for NMED to develop fit-for-purpose treatment and reuse rules.
 - Public meetings in fall 2023 for non-traditional waters, with hearings in April 2024 focused on industrial uses (non-discharge green houses, hydrogen, cooling, etc.)

Produced Water's Impact in the Permian & Energy © Land + Conservation

Pursuing Common Western State Treated Produced Water Discharge Standards

- Current ag standards developed by western ag research centers
 - NMSU, Utah State, Texas A&M, Colorado State, UC Davis
- Integrated treatments for Permian produced water can meet <u>current</u> western state fit-for-purpose discharge standards
- Working with TX on PW treatment requirements for ag, rangeland, and surface discharge considerations for limited pilot projects in the Permian Basin

Current Ag Discharge Criteria

NM - 15-20 Constituents CO, WY, OK, CA, BofRec- 36-43 Constituents

Current Pecos River Discharge Criteria

NM – 41 aquatic impact constituents
 110 - human impact constituents
 Artesia quality – 2600 ppm TDS
 State line quality – 3600 ppm TDS

TX – 45 aquatic impact constituents
110 – human impact constituents
Red Bluff quality – 4000 ppm TDS

Ag Examples of Treated PW Quality Needs

Local irrigation water application criteria:

- Less sensitive crop can be lower quality
- Greater depth to groundwater can be lower quality
- Lower fresh groundwater quality can be lower quality
- Sandy or alkaline soil or both higher SAR and TDS allowed

Parameter	Units	General	Permian	Irrigation Water			
		Treated PW Quality	Treated PW Quality	Class 1	Class 2	Class 3	
pН		6.5-8.0	6.5 - 8.0				
Temperature	°C	20-30	20 - 35				
Turbidity	NTU	<30	<30				
Total Suspended Solids	mg/L	< 20	< 20				
Total Dissolved Solids	mg/L	200-1000	< 1,000	<700	<2000	>2000	
Chlorides	mg/L	<100	< 200				
Sodium	mg/L	<100	< 200	400	800	>1000	
Calcium	mg/L	-	< 200				
Magnesium	mg/L	-	< 300				
Sulfate	mg/L	-	< 150				
Nitrogen	mg/L as N	<10	10-30				
SAR		10-15	6 -10				
Total Metals	mg/L	<15	-				
Barium	mg/L	-	< 0.5				
Strontium	mg/L	-	< 0.5				
Naturally Occurring Radioactive Material (NORM)	pCi/L	<30	-				
Adjusted gross alpha	pCi/L	<15	< 15				
Radium 226+228	pCi/L	<30	< 30				
Total Petroleum Hydrocarbons	mg/L	<10	< 10				
Total Organic Carbon	mg/L	<10	< 10				
Total Ammonia	mg/L as N	<5	< 2				
Silica	mg/L	-	< 2				
Sulfide	mg/L	-	< 0.5				
Benzene	ppb	-	< 10				

Produced Water's Impact in the Permian Lenergy Cand + Conservation

NMPWRC Priorities on Produced Water Reuse

- OCD Reuse of treated produced water in plugging and abandoning orphan wells
 - Treated water for cement/concentrate for 10 lb brine
 - Roswell and Artesia, \$25 M in federal funding
- NMED public meetings input in fall 2023, and WQCC hearings in April 2024
 - NMPWRC providing support and contact information
- Working with Lea County on a "produced water authority"
- DOE 2023 FOA proposals 5 treatment proposals and one Pareto optimization proposal with three NM companies
- Cooperate/team with State of TX and TPWC on testing and standardizing risk and tox approach for produced water
- Western InterState Hydrogen Hub (WISHH) produced water supplies, ESG, EEEJ, and social economic modeling
- Raw produced water quality collection raw quality drives treatment, costs, and reuse application opportunities

Produced Water's Impact in the Permian & Energy
Cand
Conservation

Economic Development Corporation OFLEACOUNTY

