Energy Stewardship Impact on Water and the Environment

Trend in US electricity mix: 20% hydropower 20% nuclear 20% wind 20% solar 20% CCNG

Would provide 85% reduction in both electric power CO2 emissions and water use vs. 1999

Country	CO2 Emissions – Kg/\$GDP		
Russia	9		
India	7		
China	6		
Germany	5		
Canada	3		
Japan	2		
Italy	2		
Brazil	2		
United States	2		
UK	1		
France	1		

Major users of coal for electricity generation

Natural gas, LNG, and nuclear are important energy sources in reducing global CO2 emissions

Treatment Alternative to Disposal Needs in the Permian Basin

- At 2018 production, OCD estimated New Mexico had 10 years of disposal
- Oil and gas provides 50% of state income

Treatment and Reuse Can Help Address Disposal Option Issues

Shallow Disposal – Ecological Impacts

Wink Sink #2

Holladay Hole

65-acre Lake Boehmer 'Texas Dead Sea'

Attestion Attestion Constant Cons

Deep Disposal - Earthquakes

All Non-traditional Waters are Challenging

Non-traditional waters include many tentatively identified compounds (TICs), which require more detailed analysis and toxicity i.e. Whole Effluent Toxicity (WET) testing

Quality of Thermal Treatment of Permian Produced Water

Constituent	Feed (ppm)	Distillate (ppm)	Constituent	Feed (ppm)	Distillate (ppm)
TDS	126,000	350+/-150	Sr	1348	3.3
TPH	75+/-70	11+/-3	Al	0,14	0.006
Ammonia	~400	46	Li	32	0.005
Fe	1	0	Zn	0.04	0.02
Mn	0.36	0.004	Pb	0	0.006
Na	38162	102	HCO3	120	200
Са	4554	7	SO4	270	10
Mg	751	1.5	Cl	72300	160
К	647	0.9	Si	17	0.10
Ва	6.6	0.9	PO4	3.7	2.90

Average of real-time hourly data during a one-month test series

Produced Water - Desalination vs. Disposal Costs

Produced water treatment often needs

pre/post treatment, which adds costs

Major NM Brackish Water Locations - 2-4 billion ac ft

Produced Water Production Known and Often Aggregated

NM Permian PW quantity data by ¼ township

- Lends itself to quicker utilization
- Provides for easier management coordination with local communities and broader and larger applications
- Provides easier and more cost effective access to concentrate disposal options and economies of scale
- Allows for more and larger economic development opportunities because of potential scale of available resources

Public Thoughts on Produced Water Reuse if Treated to Safe Fit-for-Purpose Levels

- Use inside oil and gas
- Industrial use outside oil and gas
 - Ag uses (non-food crops)
- Multiple ag uses (food crops)
 - Supplement drinking water
- Need more info
 - Do not support any use

NMPWRC 2022

NMPWRC 2023 Program Review and 2024 Program Plan

- Review of 2023 Consortium efforts -
 - Research, testing, and evaluation of produced water treatment and reuse inside and outside oil and gas
 - Progress on public outreach, produced water data and information, data on different reuse applications and options
- Discuss 2024 structure, directions, funding to -
 - Improve technology testing and evaluation
 - National outreach and regional transboundary strategy
 - Utilize federal and state funding to accelerate the implementation of produced water reuse
 - Establish regional-scale produced water reuse and economic development projects

