Produced Water Analytical Sampling List Working Group Accomplishments Panel and 2022 Goals and Discussion

Moderator

Panelists

Jason Herman, NMED

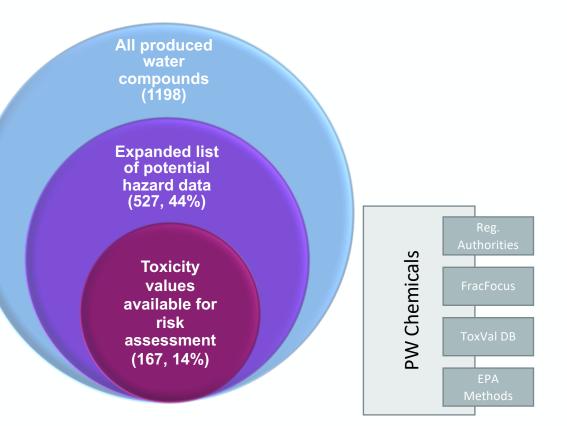
Dan Mueller, EDF

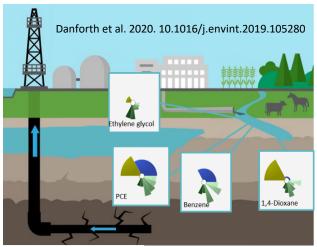
Pei Xu, NMSU

Ryan Hall, NGL

Robert Young, NMSU

NM Produced Water Research Consortium – Year-end Meeting December 1-2, 2021

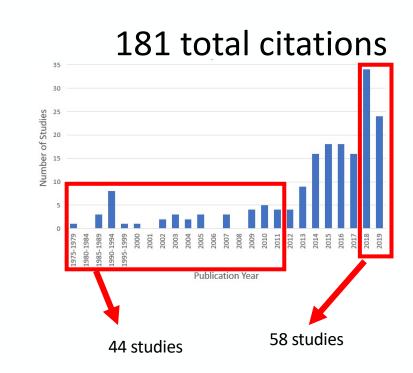

be the Future.


The Challenge in Determining What is in Produced Water

- Highly variable
 - Varies by region
 - Varies within an oil or gas play
 - Varies with time
- It is about more than just the total dissolved solids
 - Typical elevated TDS levels do present challenges for analytical methods and treatment processes
- But a number of organics, inorganics and radionuclides are also present
 - Formation water
 - Injected chemicals (well completion and on-going well maintenance)
 - Transformation/degradation products

Building Awareness on Produced Water Chemicals

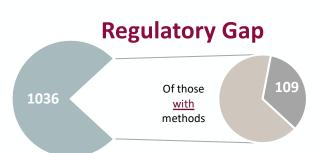
Cloelle Danforth & Elena Craft, Environmental Defense Fund

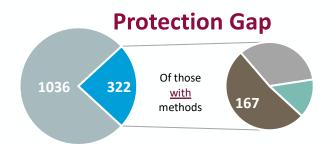

Ivan Rusyn & Weihsueh Chiu TAMU Veterinary Medicine and Biomedical Sciences

Endocrine Disruption Exchange (TEDx): Carol Kwiatkowski, Kim Schultz, Ashley Bolden

Updated Database

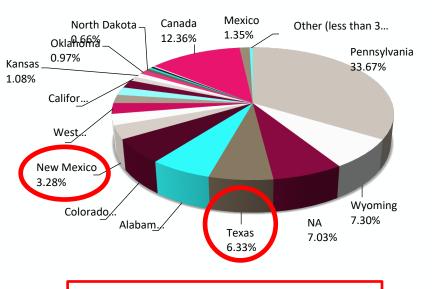
- Updated lit review
 - Updated through 11/12/2019
 - Re-ran search terms:
 - 2544
 citations →
 181 citations
 - 1358 PW chemicals




Knowledge Gaps

EDF Database (updated): 1358 produced water chemicals (national)

We lack <u>EPA-</u> <u>approved</u> analytical methods for <u>~76%</u> (over 1,000 chemicals)


109 (8% of total PW chemicals) are covered by existing federal CWA criteria, guidelines, Priority Pollutant lists

~12% of produced water chemicals <u>have</u> a method & <u>have</u> toxicity data but lack a federal water quality standard or criteria

Importance of Regional Data

Distribution of Produced Water Studies by State

Note: States producing high volumes & most heavily investigating reuse are <u>underrepresented</u> in published produced water studies (<10%).

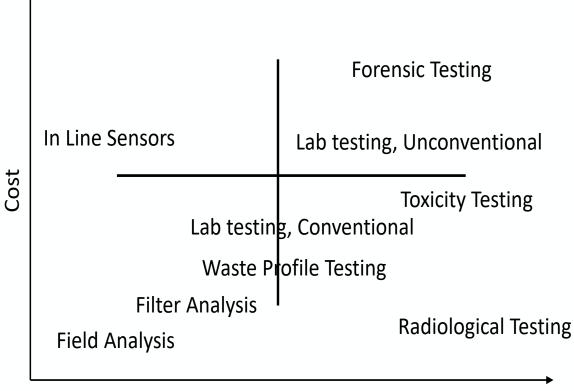
Produced water intensity map developed using data from Veil 2020

Analytical Sampling List Critical Element in Pilot Testing Program

- Sufficient effluent monitoring to evaluate treatment efficacy and reliability
- Sufficient time period to determine capabilities and limitations of treatment technology
 - Produced water is highly variable
- Sufficient evaluations to more accurately evaluate total treatment costs
 - Power cost
 - Operation and maintenance cost
 - Solids management costs

Objectives of the Water Quality Working Group

- Identify PW analytical sampling list to provide interim treatment guidance for bench- and pilot testing projects
 - Comprehensive characterization of produced water and treated water quality
 - Protection of environment and public health
 - Provide timely monitoring and cost-effective analysis of water quality
- Fill scientific and technical knowledge gaps on understanding water quality that are necessary to assist in establishing regulations and policies for the treatment and reuse of produced water



Methodology

- Conduct literature review, document water quality requirements for discharge and beneficial use of treated produced water
 - Case studies of water regulations (surface water and groundwater) and PW discharge criteria in nine states: NM, CA, OK, CO, TX, PA, OH, WV, and WY
 - Beneficial use standards for drinking water, irrigation, wildlife and livestock, road spreading, aquaculture, land application, industrial uses (e.g., reuse in O&G field, power plants)
- Conduct literature review on analytical methods for target and non-target analysis, and collect and analyze PW quality
- Request for information on analytical capabilities of commercial labs and universities
- Biweekly meetings in 2020 and 2021 with ~ 20 working group members to review and discuss water quality analysis and criteria

Multi-tiered approach for produced water characterization

Time

The cost and turnaround time of produced water analysis

Multi-tiered approach for produced water characterization

Level	Use	Parameters	Frequency	Costs/Sample
Tier 1	Continuous monitoring, bulk testing, rapid analysis, process control	Flow TSS/Turbidity TDS/EC TOC/DOC/COD pH ORP Iron (total, dissolved, Fe ²⁺) H ₂ S NH ₃ Alkalinity Hardness (total, dissolved) Specific gravity Percent Moisture Optional: UV-Vis, Fluorescence excitation-emission matrix (F-EEM)	Baseline, real- time, continuous, and routine	Feed/produced water Product water

Multi-tiered approach for produced water characterization

•		
Detailedbromateon detailedcharacterization,• RadionuclidesDetailedroutine• Radium 226, 228treatmonitoring, and• Gross Alpha/BetaeffiTier 1 data• U 235, 236, 238reliverification• Strontium 90ber	aseline (at least nce) emonstrating eatment ficacy and liability, eneficial reuse vestigation	

STATE

Multi-tiered approach for produced water characterization

			• •	Costs/sample
Tier 2	Detailed characterization, routine monitoring, and Tier 1 data verification	 Organics Oil and Grease GRO [C6-C10] by 8015D DRO [C10-C28] by 8015D MRO (C28-40) by 8015D VOCs SW-846 8260 (91) SVOC - General by 8270E (139) SVOC - TPH by 8015 (8) 1-2 samples for screening: VOC - TPH by 8015 SVOC - Explosives by 8330B SVOC - Agent Breakdown Products SVOC - Pesticides/Herbicides by 8081B SVOC - Polychlorinated biphenyls (PCBs) (8280A) SVOC - Organic Acids by 8015D SVOC - Dioxins TOX by SW 846 9020 PFOA, PFOS & PFHxS by EPA 537.1 Modified 	Baseline (at least once), Demonstrating treatment efficacy and reliability, beneficial reuse investigation	Feed/ produced water Product water

• Multi-tiered approach for produced water characterization

Level	Use	Parameters	Frequency	Costs
Tier 2	Detailed characterization, routine monitoring, and Tier 1 data verification	 Others/Optional Cyanide, Total As3 and As5 Se4 and Se6 Cr3 and Cr6 SM5540C - Methylene blue active substances - anionic surfactants Asbestos by EPA 100.1 or 100.2 Rare earth elements 	Baseline, Demonstrating treatment efficacy and reliability, beneficial reuse investigation	

Multi-tiered approach for produced water characterization

Level	Use	Parameters	Frequency	Costs/sample
Tier 3	Risks and toxicology assessment Fate/transport modeling.	WET Testing Acute and chronic toxicity HiRes LC-MS non- target screening Analysis of treated effluent on soil, plant, tissue samples	Phase 1 - Product water (at least once)	WET test \$1500
		Microbial profile	Produced water and product water (at least once)	\$200
Tier 4	Waste and residual characterization	Mass balance	As needed	

Chemical Analysis of Produced Water

Suspect and Nontargeted Screening with Liquid Chromatography - High Resolution Mass Spectrometry

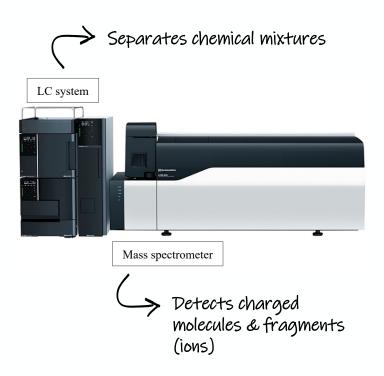
Robert B. Young, Ph.D.

Director, Chemical Analysis & Instrumentation Laboratory

BE BOLD. Shape the Future.

Outline

- Liquid chromatography high resolution mass spectrometry (LC-HRMS) overview
- Targeted vs. non-targeted analysis
- Challenges in complex samples
- Produced water analysis


NMSU CAIL Facility

Liquid Chromatography-Mass Spectrometry

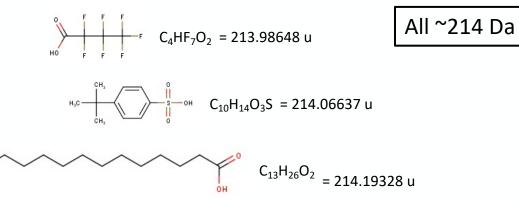
A	
m i i i	
lla	
2.5	3.0
1	2.5

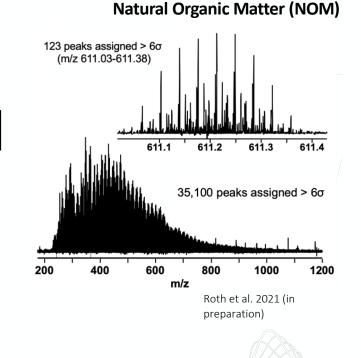
1.00 Inten.(x1		m/z	451.00	Abs. Inten.
0.75				497.45
0.50				
.25	4	39.35		
	421.40	457	.40	5.45

• Ion abundance vs. time

Retention times

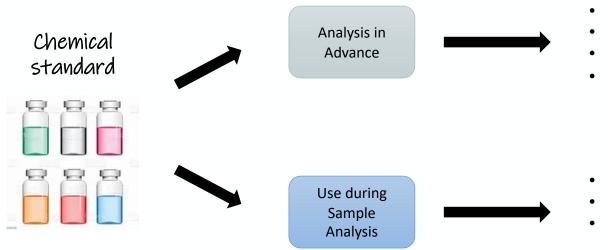
Mass spectra


Ions detected at any specific time



High Resolution Mass Spectrometry

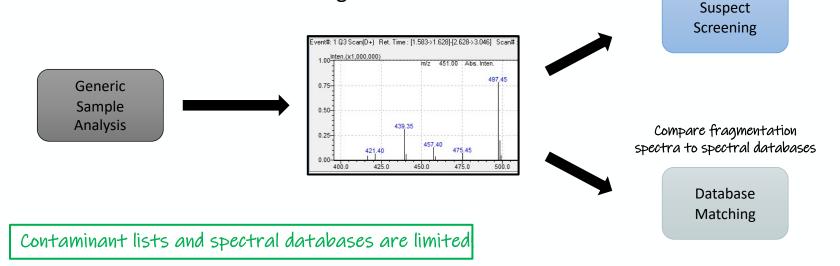
- Measures "accurate mass" from specific elemental composition to several digits
- Can produce chemical separation by mass alone



H.C

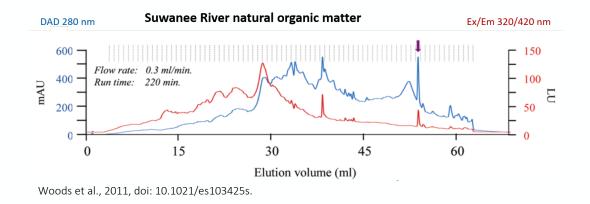
Targeted Analysis

- Retention time
- Characteristic fragmentation pattern
- Best ionization method
- Optimized instrument parameters


- Calibration curve (determine quantities)
- Determine recovery efficiency
- Characterize matrix effects (effect of other complex sample components)

Non-Targeted Analysis

- Benefits of chemical standards are lost
- BUT no need to determine targets in advance



Compare accurate masses to

lists of known contaminants

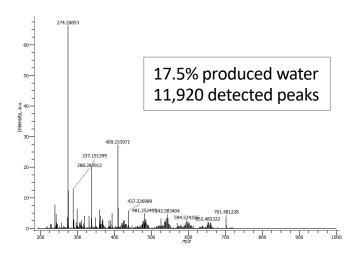
Natural Water Samples are Complex

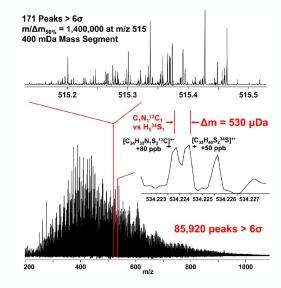
No meaningful separation after > 3.5 h

Chemical separation

- Difficult
- Requires masses and retention times

Characteristic mass spectra

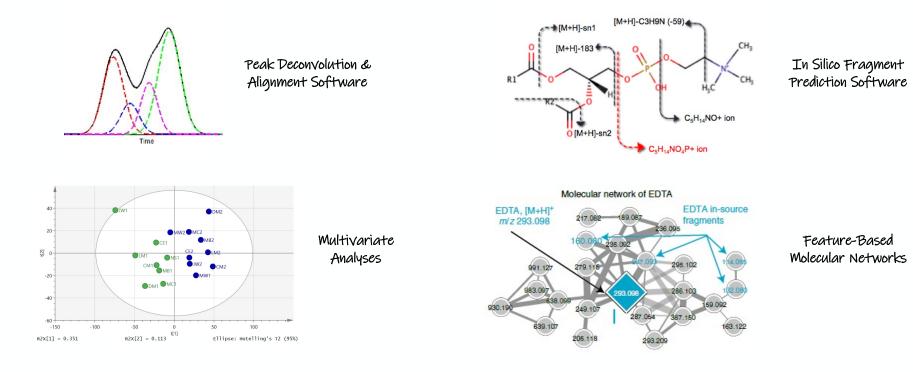

- Convoluted without chemical separation
- Difficult to match with spectral databases



Produced Water Samples are also Complex

- Flowback water includes injected fluids
- Produced water includes gas and oil from formation water

Petroleum from Natural Seep



McKenna et al., 2014, doi: 10.1021/ef5002452

Tools to Facilitate Analysis

Produced Water: Path Forward

- Improve lists of known contaminants and spectral databases
- Design studies to leverage sample differences
 - Flowback vs. produced water
 - Pre- and post-treatment
- Develop sample preparation methods to selectively analyze specific compound classes
- Other?

Achievements of Working Groups

- Completed the Produced Water Analytical Sampling List, and the List is under review by NMED.
- The List will be integrated with the Guidance on Produced Water Treatment Pilot Demonstration Planning, Testing, and Evaluation
- Guidance on Produced Water Sampling Procedures
- Critical review of produced water analytical methods to improve characterization and evaluation. Water, 2021. <u>https://www.mdpi.com/2073-4441/13/2/183</u>
- Characterization of produced water and surrounding surface water in Permian Basin for over 300 constituents, report under review
- Seven case study reports on regulatory framework and beneficial use of produced water in different states. Review completed.

Future Research in 2022

- Work with bench and pilot PW treatment projects to implement the Analytical List
- Characterize the quality of produced water and treated water, including "unknown" constituents, and investigate if these constituents present concerns for adverse impacts to human health and environment
- Develop analytical methods to address constituents of concern potentially present in PW and treated water, and to evaluate their impacts to human health and environment
- Fill scientific and technical knowledge gaps on PW constituents that are necessary to establish regulations and policies for the treatment and reuse of produced water

Thank you!

Dan Mueller: <u>dmueller@edf.org</u> Ryan Hall: <u>Ryan.Hall@nglep.com</u> Robert Young: <u>rbyoung@nmsu.edu</u> Pei Xu: <u>pxu@nmsu.edu</u>

