
Produced Water Fit-for Purpose Reuse Research

Treatment Technology Research Approaches

NMSU Carlsbad November 9, 2021

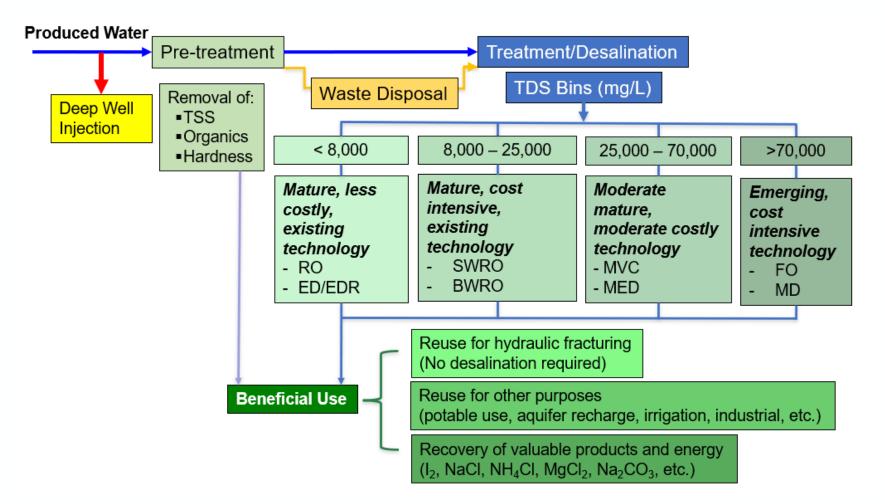
Treatment Technology Selection Drivers

- For <u>safe</u> fit-for-purpose reuse of produced water, we need to remove the constituents of concern to the appropriate level for each specific application, including:
 - Suspended solids, oils, and grease
 - Salts (referred to as dissolved solids)
 - Dissolved organics (e.g., petroleum hydrocarbons, volatile and semi-volatile compounds)
 - \circ Metals
 - $_{\circ}$ Dissolved gases (e.g., H₂S, NH₃)
 - Naturally occurring radioactive material (NORM)
 - Bacteria
- This will often require integration of multiple technologies.
- An integrated treatment system must also be <u>cost-effective</u>.

A produced water treatment system will often require a combination of pre-treatment, desalination, and post treatment technologies.

Pretreatment Technologies

Basic Separation	Adsorption	Advanced	Biological
 Settling Coagulation Hydrocyclone DAF 	 Activated carbon Zeolite Ion exchange 	 Chemical oxidation Microfiltration Ultrafiltration 	 Activated sludge MBR BAF SBR-MBR



Common Desalination and Post-treatment Technologies

Membrane Separation Technologies

High Pressure Membrane	Electrically Driven Processes	Novel Membrane Processes
Reverse OsmosisNanofiltration	ElectrodialysisElectrodeionization	Membrane DistillationForward Osmosis
Thermal Technologies		Post Treatment
 Thermal Distillation Dewvaporation Multi-Effect Distillation 		 pH Adjustment SAR Adjustment
 Mechanical Vapor Compression 		Brine Management
 Thermal Vapor Compression Multi-Stage Flash 		 Evaporation Basins Injection Wells Crystallizer

Treatment technology selection depends on PW salinity, composition, and final reuse.

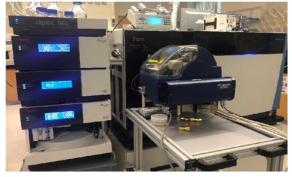
Costs increase with higher salinity, and higher treated water quality

L)	Separation of oil, grease, suspended solids	Removal of target constituents (e.g., organics, Fe, Ba, Ca, Mg, Sr, SiO ₂ , SO ₄ , microbes)	Desalination - Removal of dissolved solids	Post-treatment and restabilization (e.g., B, SAR)
Applicable TDS range (g/L) 05 10 10 10 10 10 10 10 10 10 10 10 10 10	 Hydrocyclone Gas Flotation Oil/Water Separator Settling Tank Media Filtration (sand, walnut shell, etc) Cartridge Filtration Membrane Filtration 	 Chemical Precip., Coagulation & Softening Electrocoag. & Flotation Biological Treatment Anaerobic Sulfate Reduction Ion Exchange Adsorption (carbon, zeolite, etc) Disinfection (CIO₂, UV, etc) 	ED NF D	 Waste management and resources recovery Ion Exchange AOP pH adjust.& remineral. Disinfection (Cl₂, UV)

Levels of treatment increase with higher treated water quality criteria

3 Consortium Research Goals for Reuse

1. Improve the characterization of produced water – quantity, quality, and location.


Orbitrap Fusion Mass Spectrometer

Gas Chromatography / Mass Spectrometry

Nano-Flow Liquid Chromatography

NM STATE **BE BOLD.** Shape the Future.

3 Consortium Research Goals for Reuse

2. Identify the human and ecological health and safety requirements for the safe, fit-for-purpose, reuse of treated produced water for various applications – construction, ag and rangeland, industrial, and water supply augmentation.

3 Consortium Research Goals for Reuse

3. Evaluate the cost and performance of various treatment technologies that can provide a safe and efficient way to meet fit-for-purpose treatment and reuse requirements.

Questions? Where to get more info

Access our resources and learn more at: https://nmpwrc.nmsu.edu/ (or search NMPWRC)

Email: <u>NMPWRC@nmsu.edu</u>

Want more info about produced water topics? Search – EPA WRAP, or GWPC

We want your feedback!

Please complete and return the session questionnaire.

