

Produced Water Fit-for Purpose Reuse Research Risk and Toxicology Research Efforts

San Juan Community College College of Energy November 3, 2021; NMSU

NM Produced Water Research Consortium

Carlsbad Campus

November 9, 2021

Risk and Toxicology Workshop Session Presenters

- Rose Galbraith, MPH Environmental Health Epidemiologist, NM Department of Health
- Stephen Hightower, MD FACP (Int Med/Ger) former teaching faculty at UNMH and TAMUH

NEW MEXICO PRODUCED WATER RESEARCH CONSORTIUM

Overview of Risk and Toxicology Research Session

- 1. Purpose
- 2. Goals
- 3. Collaborations and Directions
- 4. Current and Emerging Research Efforts
- 5. Questions and Discussions

Background: NM 2019 Produced Water Act

- The Act encourages the fit-forpurpose treatment and reuse of produced water outside the oil and gas sector to:
 - Enhance fresh-water sustainability;
 - reduce or eliminate fresh water use in the oil and gas sector; and
 - support new economic development opportunities.
 - At the same time maintain public and environmental health and safety

Purpose: potential uses of treated produced water

Water may be treated to fit-for-purpose specifications for possible uses including:

- Road construction;
- Rangeland rehabilitation;
- Agriculture;
- Industrial applications;
- Municipal landscaping (parks, golf courses);
- Mining;
- Surface water augmentation

Risk and Toxicology Committee Goals

Work with the Consortium to:

- Determine what's in the raw and treated water
- Assess treatment options
- Use best available toxicological methods to assess human and environmental health risks

- Share information
- Engage stakeholders (you!) throughout the process.

Public Education and Outreach is Important for the Success of Produced Water Reuse

"... we have been using treated waste-water for 40 years, we are not afraid of it, what we want to do is protect our fresh-water resources..."

NMPWRC, NM Elected Officials Forums,

July-August, 2021

NM produced water treatment and reuse could approach \$1 Billion per year in economic development in oil and gas producing counties

NEW MEXICO PRODUCED WATER RESEARCH CONSORTIUM

Consortium Operation - Working Groups and Task Committees

NEW MEXICO PRODUCED WATER RESEARCH CONSORTIUM

Risk & Toxicology Committee Approach

Risk and Toxicology Analysis of Treated Produced Water Following four specific methods:

- 1. Complete Chemical analysis of Produced and Treated Produced Water on a recurrent basis
- 2. Whole Effluent Toxicity Testing
- 3. Human Cell Line Testing
- 4. Greenhouse Evaluation for Soil and Plant Toxicity with Treated Produced Water

1. Spectroscopy for Chemical Identification:

- Chemicals are identified by their specific chemical composition and structure.
- Different technologies may be used to identify different types of chemicals in produced water.
 - ICP-OES: Inductively Coupled Plasma-optical emission Spectrometry
 - ICP-MS: Inductively Coupled plasma-mass Spectrometry
 - GC-MS: Gas Chromatography-Mass Spectrometry
 - LC-MS: Liquid Chromatography-Mass Spectrometry
 - SSEM/EDX: Scanning Electron Microscopy/Energy Dispersive X-ray

Citation: Journal: WATER, 2021,13,183: A Critical Review of Analytical Methods for the Comprehensive Characterization of Produced Water.

2. Whole Effluent Toxicity Testing

 WET tests measure effluent effects on specific test organisms' ability to survive, grow and reproduce

- Zebra Fish
 - Strong human genetic similarities
 - Highly sensitive to toxins occurring in their environmental waters.
 - Excellent for rapid drug/chemical toxicity testing
 - Allow for analysis of toxins typically more significant to aquaculture plants and animals

3. Human Cell Line Testing

- EPA will assess the toxicity of Produced and Treated Produced Water on Human Cells.
 - female breast cancer cells due to their high endocrine sensitivity.
 - human liver cells due to their function of toxin removal.
 - In both cell lines all genes will be evaluated for any alterations or disturbances.

4. Greenhouse Evaluation for Soil and Plant Toxicity with Treated Produced Water

- Greenhouses at NMSU, Texas Tech, and Texas A&M, agricultural extension services locations will be used.
- Alfalfa, Chile, Cotton or other crops will be studied.
- Analysis for any toxins in roots, stems, leaves, fruit, or soils will be obtained over multiple years to assess for acute toxicity or bioaccumulation over time.
- Evaluation for emerging contaminants.

Review: Consortium Risk and Toxicology Analysis Approach

- Complete chemical analysis of produced water and treated produced water on a recurring basis. (NMSU/EPA)
- Evaluation of Treated Produced Water by:

 Recurring Whole Effluent Toxicity Testing: (NMSU/EPA)
 Human Cell Line Testing: (EPA)
 Soil and Plant toxicology testing on Greenhouse plants from NMSU and Texas A&M using treated produced water (NMSU/EPA)
- Identify an appropriate fit-for-purpose use of the treated produced water based on the chemical composition of the water.
- Continuous monitoring for evidence of soil, plant, or aquatic toxicities over time.

Questions? Where to get more info

Access our resources and learn more at: https://nmpwrc.nmsu.edu/ (or search NMPWRC)

Email: <u>NMPWRC@nmsu.edu</u>

Want more info about produced water topics? Search – EPA WRAP, or GWPC

We want your feedback!

Please compete and return the session questionnaire

